
“Real Attackers Don’t Compute Gradients”:

Bridging the Gap between Adversarial ML Research and Practice
Giovanni Apruzzese*, Hyrum S. Anderson§, Savino Dambra¶, David Freeman†, Fabio Pierazzi∥, Kevin Roundy¶

*University of Liechtenstein, §Robust Intelligence, ¶Norton Research Group, †Meta, ∥King’s College London
{name.surname}@{uni.li*, nortonlifelock.com¶, kcl.ac.uk∥}, dfreeman@meta.com†, hyrum@robustintelligence.com§

Recent years have seen a proliferation of research on adversarial machine
learning. Numerous papers demonstrate powerful algorithmic attacks against
a wide variety of machine learning (ML) models, and numerous other papers
propose defenses that can withstand most attacks. However, abundant real-
world evidence suggests that actual attackers use simple tactics to subvert
ML-driven systems, and as a result security practitioners have not prioritized
adversarial ML defenses. Motivated by the apparent gap between researchers
and practitioners, this position paper aims to bridge the two domains.
We first present three real-world case studies from which we can glean
practical insights unknown or neglected in research. Next, we analyze all
adversarial ML papers recently published in top security conferences,
highlighting positive trends and blind spots. Finally, we state positions on
precise and cost-driven threat modeling, collaboration between industry and
academia, and reproducible research. We believe that our positions, if
adopted, will increase the real-world impact of future endeavours in
adversarial ML, bringing both researchers and practitioners closer to their
shared goal of improving the security of ML systems.

Abstract

Case Studies (from industry practitioners)

Analysis of all related papers [2019-2021] from S&P, NDSS, Sec, CCS.

State-of-Research (from “top-4” conferences) Our Four Positions (P)

Real attackers attack ML systems (not ML models)!

Cybersecurity and Machine Learning

The authors thank all participants of the Dagstuhl Seminar “Security of
Machine Learning”, as most of the positions described in our paper
derive from discussions originated during this event.

All our resources are available at: https://real-gradients.github.io
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Some ML systems are invisible to real attackers!

“If you look at cybercrime in economical terms (as you

should because it is a business) the optimization for an

adversarial ex. is not the expensive part, it is the

engineering part of building a tool that can create a

diverse set of attacks with no obvious watermarks.”

Some inconsistencies…

What ML paradigm is attacked (i.e., does the 
ML system rely on shallow or deep learning)?

Does the paper focus on an attack or on a defense?

What is the main attack family (i.e., poisoning, 
stealing, evasion, membership inference)?

Has the source-code been publicly released? Are the costs taken into account (in any way)?

What are the data-types (i.e., images, audio, 
text, or other) considered in the evaluation?

Does the paper consider an ML system 
deployed in the real world?

Has a complex pipeline been reproduced in 
the evaluation (i.e., is it a ML system?)

Real ML systems have many defensive layers (not all using ML)

Operational ML detectors (still) do not require gradients to be fooled.

Time is an important cost factor (more relevant than queries!)

The four-layered architecture of the ML-based spam detector used by Facebook. Most attacks can be blocked 
at the top layers, which not necessarily use ML (deep learning is mostly beneficial at the last layer).

Some phishing webpages that are poorly recognized by a commercial ML-based detector. Attackers can circumvent 
Deep Learning methods via cheap tactics, which have been known for decades but which are still effective today.

→ The ML system uses both “deep” and “shallow” ML methods.
→ Only a small portion of malicious actions bypass the detector, which require huge effort

→ Most failures of this ML detector are due to “natural” changes, unpredictable by developers.
→ We found no evidence of “adversarial examples” leveraging gradients (“probatio diabolica”)

In-depth look at the MLSEC anti-phishing evasion challenge (2021). The plot reports the historical submissions by the 
top-4 ranked teams over the course of the challenge. The 1st-team (320 queries) was the last to submit their solutions.

→ Domain expertise is widely exploited by (real) attackers, who not necessarily will resort on 
adversarial ML techniques to reach their goals

→ Measuring “cost” via queries alone is an oversimplification: query-efficient attacks may 
require a lot of time!

Cybersecurity is rooted in economics!

A ML model is just a single component within a much complex system. Real attackers interact with the ML system, and 
many things can happen before any input reaches the ML model, but also after the output is received by the attacker.

Real ML systems are closed source, and some are “invisible” to real attackers, who may not receive any feedback usable 
for their attacks, and may not even know if such feedback is the result of their actions being analyzed by ML.

A tweet by Konstantin Berlin, head of Sophos AI, in response to a Twitter thread entailing the participation of practitioners 
and researchers [63]. Operational cybersecurity is an optimization process, and developers have priorities (which 

apparently do not include the security of their ML components). Ultimately, “No system is foolproof”.

P1: Adapt threat models to ML systems

P2: Cost-based threat modeling

P4: Source-code disclosure with “just culture”

P3: Collaborations between industry and academia

Co et al. [101]: “In white-box settings, the adversary has

complete knowledge of the model architecture, parameters, and

training data.[...] In a black-box setting, the adversary has no

knowledge of the target model and no access to surrogate

datasets.”

Shan et al. [102]: “We assume a basic white box threat model,

where adversaries have direct access to the the ML model, its

architecture, and its internal parameter values [...] but do not

have access to the training data.”

Xiao et al. [22]: “In this paper, we focus on the white-box

adversarial attack, which means we need to access the target

model (including its structure and parameters).”

Suya et al. [103] assume a “black-box” attacker that “does not

have direct access to the target model or knowledge of its

parameters,” but that “has access to pre-trained local models for

the same task as the target model” which could be “directly

available or produced from access to similar training data.”

What does the attacker know? The terms “white-box” and “black-box” are 
widespread, but often denote different degrees of attacker’s knowledge. 

Hui et al. [104] envision a “gray-box” setting which “gives full

knowledge to the adversary in terms of the model details.

Specifically, except for the training data, the adversary knows

almost everything about the model, such as the architecture and

the hyper-parameters used for training.”

Attacker’s Goal, Knowledge, Capabilities and Strategy
should reflect the ML system (and not just the ML model!)

→ Real attackers have broader objectives and 
do not want just to “evade the ML model.”

Each of those elements should be precisely defined.
→ Existing terminology is often 

used inconsistently. 

Both attacks and defenses have a cost. Real attackers do not launch 
an attack if it is too expensive; and real developers will not develop a 

countermeasure if the attack is unlikely to occur in reality.

→Measuring the cost should account for the human 
factor (queries / computation are not enough)

→ There is value also in defenses that work “only” against attackers 
with limited knowledge (since they are more common in reality).

Practitioners should be more willing to cooperate 
with researchers: both have the same goal!

(!) Real ML systems are not open 

for research, and considerations 
on “custom-made” ML systems 

hardly portray realistic use cases.

(!) Even evaluations on real ML 

systems are hard to analyze for 
researchers if they cannot see 

what happens “inside the box.”

(!) Getting in touch with 

ML practitioners is 
daunting for researchers.

Just Culture: assumes that mistakes are bound to occur and derive 
from organizational issues. Mistakes are avoided by understanding 

their root causes and using them as constructive learning experiences.

Embracing a just culture naturally promotes the gradual 
improvement at the base of research efforts.

→ The fast pace of research in ML can 
lead to errors in experiments (not always 

spotted during the peer-review)

→ By releasing the source code, future works can 
correct such mistakes, potentially systematizing 
them, and hence turning “negative results” into 

positive outcomes for our community.

💡 Bug Bounties 💡 Streamline research collaboration process💡 Releasing Schematics

Looking ahead, we also endorse research efforts on forensics of adversarial examples. 
Maybe real attackers do compute gradients… but we cannot prove it (yet)!

When asked if they secure their ML systems, practitioners reply “Why do so?” [5]

Positions from Researchers and Practitioners

Disclaimer: taken individually, all past work are correct. The 
problems arise when analyzing the situation as a whole!

https://real-gradients.github.io/
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